Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 199(2): 427-439, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35616737

RESUMO

Understanding population responses to environmental conditions is key in the current context of climate change and the extreme climatic events that are threatening biodiversity in an unprecedented way. In this work, we provide a framework for understanding butterfly population responses to weather and extreme climatic seasons by taking into account topographic heterogeneity, species' life-cycles and density-dependent processes. We used a citizen-science database of Mediterranean butterflies that contains long-term population data (28 years) on 78 butterfly species from 146 sites in the Mediterranean mesic and alpine climate regions. Climatic data were obtained from 93 meteorological stations operating during this period near the butterfly sites. We studied how seasonal precipitation and temperature affect population growth while taking into account the effects of density dependence. Our results reveal (i) the beneficial effects of winter and spring precipitation for butterfly populations, which are most evident in the Mediterranean region and in univoltine species, and mainly affect the larval stage; (ii) a general negative effect of summer rain in the previous year, which affects the adult stage; and (iii) a consistent negative effect of mild autumns and winters on population growth. In addition, density dependence played a major role in the population dynamics of most species, except for those with long-term negative population trends. Our analyses also provide compelling evidence that both extreme population levels in previous years and extreme climatic seasons in the current year provoke population crashes and explosions, especially in the Mediterranean mesic region.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Mudança Climática , Ecossistema , Dinâmica Populacional , Estações do Ano , Tempo (Meteorologia)
2.
J Anim Ecol ; 91(5): 1010-1023, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297500

RESUMO

Parasitism is a key factor in the population dynamics of many herbivorous insects, although its impact on host populations varies widely, for instance, along latitudinal and altitudinal gradients. Understanding the sources of geographical variation in host-parasitoid interactions is crucial for reliably predicting the future success of the interacting species under a context of global change. Here, we examine larval parasitism in the butterfly Aglais urticae in south-west Europe, where it is a mountain specialist. Larval nests were sampled over 2 years along altitudinal gradients in three Iberian mountain ranges, including the Sierra Nevada, home to its southernmost European population. Additional data on nettle condition and adult butterflies were obtained in the study areas. These data sources were used to investigate whether or not differences in parasitism rates are related to the geographical position and phenology of the host, and to the availability of the host plants. Phenological differences in the host populations between regions were related to the severity of summer drought and the corresponding differences in host plant availability. At the trailing-edge of its distribution, the butterfly's breeding season was restricted to the end of winter and spring, while in its northern Iberian range the season was prolonged until mid-summer. Although parasitism was an important source of mortality in all regions, parasitism rates and parasitoid richness were highest in the north and lowest in the south. Moreover, within a region, there was a notable increase in parasitism rates over time, which probably led to selection against an additional late summer host generation in northern regions. Conversely, the shorter breeding season in Sierra Nevada resulted in a loss of synchrony between the host and one important late season parasitoid, Sturmia bella, which may partly explain the high density of this butterfly species at the trailing-edge of its range. Our results support the key role of host phenology in accounting for differences in parasitism rates between populations. They also provide insights into how climate through host plant availability affects host phenology and, ultimately, the impact of parasitism on host populations.


Assuntos
Borboletas , Herbivoria , Animais , Larva , Melhoramento Vegetal , Plantas
3.
Sci Rep ; 9(1): 5680, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952919

RESUMO

The climatic preferences of the species determine to a large extent their response to climate change. Temperature preferences have been shown to play a key role in driving trends in animal populations. However, the relative importance of temperature and precipitation preferences is still poorly understood, particularly in systems where ecological processes are strongly constrained by the amount and timing of rainfall. In this study, we estimated the role played by temperature and precipitation preferences in determining population trends for birds and butterflies in a Mediterranean area. Trends were derived from long-term biodiversity monitoring data and temperature and precipitation preferences were estimated from species distribution data at three different geographical scales. We show that population trends were first and foremost related to precipitation preferences both in birds and in butterflies. Temperature preferences had a weaker effect on population trends, and were significant only in birds. The effect of precipitation on population trends operated in opposite directions in the two groups of species: butterfly species from arid environments and bird species from humid habitats are decreasing most. Our results indicate that, although commonly neglected, water availability is likely an important driver of animal population change in the Mediterranean region, with highly contrasting impacts among taxonomical groups.


Assuntos
Aves/fisiologia , Borboletas/fisiologia , Animais , Biodiversidade , Mudança Climática , Ecossistema , Região do Mediterrâneo , Dinâmica Populacional , Estações do Ano , Temperatura
4.
J Plant Physiol ; 172: 82-91, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25270104

RESUMO

Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses.


Assuntos
Biodiversidade , Ciclo do Carbono , Cadeia Alimentar , Ciclo do Nitrogênio , Fósforo/metabolismo , Fenômenos Fisiológicos Vegetais , Biomassa , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...